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1 Introduction

Some phase transitions are continuous, others first-order. Landau's criterion for a continuous
transition says that there should be no invariant cubic term in the effective Hamiltonian. In group
theory language this reads

[R3]3/ E; (1)

where R is the representation in which the order parameter transforms, [R3] is the symmetric part
of R3, and E is the unit representation.

Landau's criterion correctly predicts transition order in many cases, but not always. E.g., there are
continuous transitions which violate it, such as the 3-state Potts model in 2d. From RG perspective,
this may be explained by saying that Landau's criterion is not applicable if the cubic operator
transforming as [R3] is irrelevant.

There also exist transitions which satisfy Landau's criterion and yet they are first-order. From RG
perspective, this may be explained if there is no stable fixed point (because the quartic couplings
flow to infinity or to the region where the potential is unbounded from below). Such a first-order
transition is called �fluctuation-driven�, to distinguish from transitions which are trivially first-
order because they violate Landau.

From the bootstrap perspective, transition must be first-order if there is no CFT with the
required symmetry properties, and it may be continuous if the CFT exists (and if the microscopic
model lies in the basin of attraction).

This is how bootstrap contributed to clarifying the nature of the deconfined criticality transition
(see [1], section V.E.4, for a review). While a continuous transition was conjectured based on Monte
Carlo simulations, bootstrap showed that there is no unitary CFT with the needed symmetry and
scaling dimensions, and so the transition must be weakly 1st order.1

Here we will discuss two other examples where transition is known to be 1st order, and it would
be interesting to get a bootstrap proof of this fact.

2 Q-state Potts model in 3d

Lattice simulations show that Q-state nearest-neighbor ferromagnetic Potts model with Q> 3
has a 1st-order transition in 3d. (In agreement with Landau's criterion.) Can we explain this via
bootstrap?

This is of interest for the condensed matter and mathematical physics communities (Max Metlitski,
Hugo Duminil-Copin, personal communications). Perthaps a fixed point exists but the nearest-
neighbor Potts model lies outside of its basin of attraction? A bootstrap proof would exclude this.

From the bootstrap perspective, one would have to prove that there is no unitary 3d CFT with
SQ global symmetry and some assumptions on the spectrum of local operators (e.g. there must be
only one singlet scalar). This problem is open. A few people told me they tried, although I don't
remember all of their names.2 Please let me know if you worked/are working on this.

1. Update (July 2025). This question has been recently reopened. A tricritical point is another seriously considered
possibility. It is compatible with the conformal bootstrap constraints [2].
2. Shai Chester, Alessandro Vichi, Bernardo Zan...
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One possible strategy to attack this question for Q= 3 (Shai Chester, personal communication)
is to start in 2d and find a set of constraints which puts the 2d 3-state Potts CFT in a bootstrap
island. Unfortunately this set of bootstrap constraints is not easy to find. If this could be done,
one could increase d gradually and see if at some dc the island disappears.3

Another possibility is to start directly in 3d and consider Q-state Potts model with Q large. First-
order transition is known to be stronger for large Q. Perhaps the bootstrap problem will also be
easier for large Q?

It's also interesting to consider a more general problem relaxing symmetry for Q=3 from S3 to
Z3 (Max Metlitski, personal communication).

3 Antiferromagnets
Phase transitions in antiferromagnets may have order parameters with n> 4 components, and
there are many situations where RG predicts a fluctuation-driven 1st-order phase transition, in
agreement with experiment. An exhaustive study was done in 1976 Mukamel and Krinsky [6],[7].
I am not aware of any bootstrap work.

Consider e.g. the case discussed in [6], p.5071 section �Type-I antiferromagnets, m~ ? k~ �. The
Landau-Ginzburg theory has a 6-component order parameter '=(�1; �2; �3; �1� ; ��2; ��3). Denoting
xi= �i

2, yi= ��i2, the quartic potential has the form

V = r(x1+x2+x3+ y1+ y2+ y3)
+u1(x12+x2

2+x3
2+ y1

2+ y2
2+ y3

2)
+u2(x1y1+x2y2+x3y3)
+u3(x1x2+x1x3+x2x3+ y1y2+ y1y3+ y2y3)
+u4(y1x2+ y2x3+ y3x1)
+u5(x1y2+x2y3+x3y1)

In addition to the (Z2)6 transformations which flip the individual signs of components of ', the
potential is left invariant by two permutations (given in the cycle representation)

p1=(x1 y2)(x2 y1)
p2=(x1x2x3)(y1 y2 y3)

which generate a subgroup G�S6 (it should be easy to figure out which one using GAP:). The full
symmetry group is then Gn (Z2)6. One-loop beta-functions for this theory are given on p. 5081
of [7], and while there are many fixed points, all of them are shown to be unstable. This suggests
that the phase transition must be first-order. This agrees with experiments in the uranium dioxide
UO2, and with a Monte Carlo study in a related model in the same universality class [8].

It would be great to find bootstrap evidence for this fact, by excluding unitary CFTs with only
one relevant singlet and Gn (Z2)6 symmetry. This appears hard in full generality, but perhaps it
can be done for �' not much above 0.5? Or for the central charge not much different from that
of 6 free scalars?

Same question can be asked for many other transitions discussed in [6],[7].
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