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Basic problems

Stat. phys. Lattice model in D dims

(per se or as regularization of QFT)


- D.o.f. could be discrete (Ising,Potts) or continuous (XY)

  

- Continuous or gauge symmetries

Typical questions:

Qualitative 
  -What are the phases?

  -What is the nature of phase transition separating them?

   

Quantitative 
  -Can one compute, with some accuracy, free energy?

  -Can one compute, with some accuracy, critical exponents?

Suff. different…
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Renormalization group

- Series of steps increasing lattice spacing     


  preserving partition function (up to a const)       

- (Discrete) flow in the space of Hamiltonians    

a → ba → . . . → bna → . . .

Zn = eVol×gnZn+1

H0 → H1 → . . .

These ideas are >50 years old and no doubt correct. But good/practical implementation is lacking.

Answers to typical questions:

- Phase diagram: study fixed points of RG map & basin of attraction

   


-  Free energy (per site) computed iterating   


                                             =>         


- Critical exponents <=> eigenvalues of the RG map Jacobian at a fixed point


f(Hn) = gn +
1

bD
f(Hn+1)

f =
∞

∑
n=0

gn

bDn

∇R(H*)
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Tensor RG
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Levin-Nave PRL 2006

1. Rewrite Z as a tensor network contraction

Figure 1: A tensor network built out of a four-tensor A. It is assumed that, after a large
number of periodic repetitions, the outgoing bonds on network sides are joined pairwise, so
that no uncontracted indices remain.

An RG transformation (or map) is a coarse-graining of the tensor network. It
rewrites the tensor network in terms of new tensors, fewer in number than the original
ones. The simplest rule defines a new tensor T by contracting four A tensors, as follows:

, (1.2)

but more sophisticated rules can also be considered (see below). One then iterates this
map and studies the resulting RG flow.

We see that T is naturally defined on W ⌦ W ⌦ W ⌦ W where W = V ⌦ V . It is
in fact a general feature of tensor RG maps that they raise the index space dimension.
In numerical calculations, reviewed in Appendix C, it is customary to truncate W to
a subspace of the same dimension as V , chosen to minimize the truncation error. In
contrast, in this paper we will not use any truncation. Our RG maps will preserve
the partition function exactly. Our tensors will be defined in an infinite-dimensional
real Hilbert space V with a countable basis. For such V there exists a (non-unique)
isomorphism1 between V and V ⌦ V . Fixing some such isomorphism J , we define the
final RG-transformed tensor A0 as

. (1.3)

Now, tensors A and A0 live on the same Hilbert space and can be compared. The RG
fixed point equation in this setting reads

A0 = NA, (1.4)

1I.e. a one-to-one isometric linear map. See also footnote 5.
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i

j
k

l

indices = degrees of freedom
i,j,k,l =1… χ

2. RG map: ℛ : A ↦ A′￼ Z(A, N × M) = Z(A′￼,
N
b

,
M
b

)so that

b - scale factor

Exercise: Do this for NN Ising model, with . χ = 2

χ = ∞ is OK as long as ∥A∥ = ( ∑
i, j,k,l

|Aijkl |
2 )1/2 < ∞

E.g. XY model needs χ = ∞
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Some advantages of Tensor RG

- Local parametrization of the model - every tensor talks only to nearest 
neighbors; this locality is preserved under RG


- Natural norm - Hilbert-Schmidt


 

- More "quantum" 
	 


This can simplify the tensor. 


Also can simplify action of symmetries (transforming to a basis of irreps 
of symmetry group)

unitary rotation

gives equivalent tensor
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NN Ising example (skip if all clear)

H = β ∑
<xy>

sxsy, sx = ± 1

Aijkl = eβ(i⋅j+j⋅k+k⋅l+l⋅i) i, j, k, l ∈ {±1}(1)

(2) Rotate to basis |0⟩, |1⟩ =
1

2
( | + 1⟩ ± | − 1⟩)

(                 )/(                   )

place at the positions of Ising spins:

functional analysis, one proves that an exact fixed point exists nearby. This would
therefore be a computer-assisted proof, in the spirit of Lanford’s construction of the
Feigenbaum fixed point [9]. We think this is a very interesting open problem.

A similar proof for the critical point of the 3D Ising model would be even more
exciting. This should wait until numerical tensor RG methods are able to approximate
this fixed point with a good accuracy, which has not yet been achieved (see Appendix
B.5).
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A Tensor representation for the 2D Ising model

In this appendix we show how to transform the partition function of the nearest-
neighbor 2D Ising model on the square lattice with the Hamiltonian H = ��

P
hiji �i�j,

�i = ±1, to a tensor network built out of 4-tensors as in Fig. 1. We present two ways
to perform this transformation.

A.1 Rotated lattice

This representation was used e.g. in [10]. We start by rotating the spin lattice by 45
degrees. We now associate a tensor with every second square, contractions taking place
at the positions of Ising spins with tensor contractions:

(A.1)

The Hilbert space has two basis elements |�i, � = ±. Assigning tensor components

  

= e�(�1�2+�2�3+�3�4+�4�1), (A.2)
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The Hilbert space has two basis elements |�i, � = ±. Assigning tensor components

  

= e�(�1�2+�2�3+�3�4+�4�1), (A.2)

we reproduce the 2D Ising model partition function. In finite volume this gives the par-
tition function with periodic boundary conditions on the lattice rotated by 45 degrees.

Transforming the basis to the Z2 even (0) and odd (1) states

|0i =
1p
2
(|+i + |�i), |1i =

1p
2
(|+i � |�i), (A.3)

the nonzero tensor components become:

A0000 = cosh(4�) + 3, A0101 = A1111 = cosh(4�) � 1, A0011 = sinh(4�), (A.4)

and rotations thereof. By Z2 invariance, they all have an even number of 1 indices.

A.2 Unrotated lattice

Alternatively, one can perform the transformation without rotating the lattice [12,
13]. In finite volume, this method gives the partition function with the usual periodic
boundary conditions. We start by representing W = e��1�2 , viewed as a two-tensor
in the Hilbert space with basis elements |�i, � = ±, as a contraction of two tensors
W = MMT with

M =

✓p
c

p
sp

c �
p

s

◆
, (A.5)

where c = cosh �, s = sinh �. Graphically
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Feigenbaum fixed point [9]. We think this is a very interesting open problem.
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this fixed point with a good accuracy, which has not yet been achieved (see Appendix
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1

go to zero in high-T limit
β → 0
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Know rigorously:
β = 0 β = ∞

A0000 = 1
high-T fixed point  AHT



low-T fixed point

(two copies of HT f.p.)

ALT = A(+) ⊕ A(−)

NN Ising model

Thm: (2022, w/ Kennedy) 
 an analytic tensor-RG map  

contracts towards   
in an ε-neighborhood 

Involves: - coarse-graining

            - disentangling

          - gauge fixing

∃
AHT

2024: Ebel - generalization to 3D  
(nontrivial, different disentanglers)

Thm: (2022 w/ Kennedy) 
 an analytic RG map which  
contracts towards  in 

an ε-neighborhood preserving Z₂ inv. 
 

- First-order phase transition along the 
magnetic Z₂-breaking direction.

∃
ALT

discontinuity fixed point

(Nienhuis, Nauenberg 1975)

2025 (w/Ebel & Kennedy)  
- Quantify convergence neighborhood, computer-assisted 
- A simpler RG map called 2x1 map
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Expect / Know numerically / Would like to prove:

NN Ising model

 a third fixed point, to which

critical Ising flows
∃

Unlike low-T and high-T,

this 3rd f.p. has: 

- -many nonzero elements

- one unstable direction

∞

Why do we believe this? 

- Many numerical tensor RG algorithms, operate on tensors of finite .  
- Only approximate - truncation error. 

- Truncation error decreases as  gets larger.  
- Conjecture that =∞ limit should exist.

χ

χ
χ
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Goal & Rules

Prove the existence of the critical fixed point, and get estimates on 
critical exponents. 

We want to do this without using any exact solvability properties

of the Ising model in 2D. 


In particular we do not use nonlocal transformation to free fermionic 
representation of NN 2D Ising


This is because the RG method is completely general, and we want

to make this clear. 


In the future we can imagine that the same ideas will work in 3D.
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Difficulties

Numerical algorithms involve some operations on tensors

which are a bit difficult to estimate in ∞ - dim context 

(like eigenvalue and singular value decompositions).


For rigorous analysis, we cannot use the existing algorithms;

we have to design our own algorithms.
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Newton Method

Since the critical point has one relevant direction, need to set up Newton

method.

Ebel,Kennedy,S.R., PRX (2025)

A = R(A) f.p. equation for RG map

N(A) = A − (I − ∇R)−1(A − R(A))
A = N(A) equivalent f.p. equation 


for Newton map

Newton map is expected to be a contraction near f.p. provided that

∇R has no eigenvalues 1 in an ε-neighborhood.

At a numerical level, we did this.
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Eigenvalues of  ∇R
Two classes of eigenvalues

   

- universal         

where  are scaling dimension of non-derivative CFT operators


- non-universal:          λᵢ can be anything

     (redundant perturbations ↔ derivative CFT operators)

λi = bD−Δi

Δi

Z2 O ωCFT = 22→!O ω of →R ω of →R↑

+ ε 2 1.9996 1.9996

+ T 1 1.0015 ↑1.0010

+ T 1 0.9980 ↑0.9982

+ 0.6322 0.7757

+ 0.5941 ± 0.1195i 0.6209

. . . . . .

↑ ϑ 215/8
↓ 3.668016 3.6684 3.668014

↑ 1.5328 0.0027 ± 1.5364i

↑ 1.5300 0.8600

↑ 0.8869 0.6318 ± 0.0583i

. . . . . .

Table 4: Column 1: Z2 quantum number. Column 2,3 (colored rows): the first few low-

dimension CFT quasiprimaries, and their exact eigenvalues. Columns 4,5: The first few

largest, in absolute value, Jacobian eigenvalues at the approximate fixed point for the non-

rotating Gilt-TNR (→R) and for the rotating Gilt-TNR (→R↑). Uncolored rows show RG

eigenvalues corresponding to derivative interactions, which are not universal.

this directional derivative via a symmetric finite di!erence approximation:

Dh =
R(A + hv) ↑ R(A ↑ hv)

2h
, (3.11)

where h = 10→4 is a small parameter, set at this value to balance truncation and roundo!

errors; see Appendix E.31

Colored rows of Table 4 correspond to CFT quasiprimaries. The corresponding Jaco-

bian eigenvalues can be compared to the CFT predictions in columns 2,3, computed via

Eq. (2.8). We observe reasonably good agreement, both in the Z2-even and in the Z2-odd

sectors. Note in particular the two eigenvalues close to 1 corresponding to the stress tensor

components T and T .

In the few uncolored rows in Table 4 we report eigenvalues which do not correspond

to quasiprimaries on the CFT side. These rows correspond to derivative operators, whose

eigenvalues are not universal, as discussed in Section 2.2. For this reason, the CFT entries

in these rows are left empty.32

To demonstrate the latter point, let us compare the Jacobian eigenvalues between R

and the rotating Gilt-TNR map R↑ which will be discussed in Section 4 (Table 4, last

column). We see that the quasiprimary eigenvalues change very little, apart from the

↑1 factor picked up by the T , T eigenvalues, as discussed in Section 2.5. On the other

31Computing O(10) largest eigenvalues and the corresponding eigenvectors of →R by this method requires

O(100) calls of the RG map, and for ω = 30 takes a few minutes on a laptop.
32Note that the Jacobian matrix is real but in general not symmetric, and so some eigenvalues come in

complex-conjugate pairs.

– 22 –

Our numerical results:
eigs 1
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Stress tensor perturbation
- 2D CFT has stress-tensor operator , a symmetric traceless tensor,

spin-2 under rotations and scaling dim. 2, i.e. marginal - eigenvalue 1 

- Perturbing by this operator corresponds to rescaling and rotating the axes


CFT, rotationally invariant                                             CFT+ ∫ hµν Tµν d²x


 
=> А 2-param family of fixed points!   Newton method ?

Tμν

Two strategies:

a) (OPEN) Find tensor RG map which respects spatial symmetries of square

lattice (left-right flips and 90° rotations). 


b) OUR IDEA Modify RG map by adding 90° rotation. 


Spin-2 eigenvalues are multiplied by -1:

1 → -1  No problem for Newton
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Numerical results for Newton method

Newton iteration m0 10 20 30

||A (m)−
A (m+

1)||

0.010.0010.00011e − 51e − 61e − 71e − 81e − 91e − 10

Projector rank s
3
9
26
54

Figure 9: Convergence of the Newton method for approximations of Jacobian that use

di!erent rank s of the Ps projector in Eq. (4.2).

Figure 10: The histogram of distances between the 37 tensors in Fig. 9 which fall below

the 10→9 line.
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Convergence of Newton iterates
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eigenvalues corresponding to derivative interactions, which are not universal.

this directional derivative via a symmetric finite di!erence approximation:

Dh =
R(A + hv) ↑ R(A ↑ hv)

2h
, (3.11)

where h = 10→4 is a small parameter, set at this value to balance truncation and roundo!

errors; see Appendix E.31

Colored rows of Table 4 correspond to CFT quasiprimaries. The corresponding Jaco-

bian eigenvalues can be compared to the CFT predictions in columns 2,3, computed via

Eq. (2.8). We observe reasonably good agreement, both in the Z2-even and in the Z2-odd

sectors. Note in particular the two eigenvalues close to 1 corresponding to the stress tensor

components T and T .

In the few uncolored rows in Table 4 we report eigenvalues which do not correspond

to quasiprimaries on the CFT side. These rows correspond to derivative operators, whose

eigenvalues are not universal, as discussed in Section 2.2. For this reason, the CFT entries

in these rows are left empty.32

To demonstrate the latter point, let us compare the Jacobian eigenvalues between R

and the rotating Gilt-TNR map R↑ which will be discussed in Section 4 (Table 4, last

column). We see that the quasiprimary eigenvalues change very little, apart from the

↑1 factor picked up by the T , T eigenvalues, as discussed in Section 2.5. On the other

31Computing O(10) largest eigenvalues and the corresponding eigenvectors of →R by this method requires

O(100) calls of the RG map, and for ω = 30 takes a few minutes on a laptop.
32Note that the Jacobian matrix is real but in general not symmetric, and so some eigenvalues come in

complex-conjugate pairs.
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Jacobian eigenvalues
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Computer-assisted bounds 
Ebel, Kennedy, S.R.,  arXiv: 2506.03247

- We define a tensor RG map called a 2x1 map.


- Initial tensor is divided into various pieces, manipulated and recombined using 
tensor network notation.


At the nonlinear level, Eqs. (2.4) for Gh, Gv are replaced by the exact equalities:

G = 1V + g +
1

1 +
→
1↑ ω

g2, G→1 = 1V ↑ g +
1

1 +
→
1↑ ω

g2. (2.37)

The first equation is the definition of G. The second equation is easily checked using (2.36). We
will be assuming that |ω| < 1, and so G,G→1 are analytic functions of b.

Let us briefly discuss how this is related to [3]. There, the gauge transformation was done with
Gthere = exp(g), while our definition corresponds to taking G = exp(cg) with c = arcsin

(→
ω
)
/
→
ω =

1 + O(ω). The two expressions agree to linear order in g and give the same needed cancellations.
We will use Eq. (2.37) as it is simpler for the quantitative analysis of higher-order terms.

We will apply Gh, Gv and their inverses to the horizontal, vertical legs of A, respectively, as in
Fig. 1(a). We denote the resulting tensor by Ag. Partition function is preserved ([4], Sec.2.4.3):

Z(A, εx ↓ εy) = Z(Ag, εx ↓ εy) . (2.38)

Note that Ag is not normalized; we will worry about normalization at the end. As discussed in
Section 2.3.2, if we expand Ag in g, the first order in g part will cancel the sectors of b given in (2.7).
We now discuss the main improvement with respect to [3]: a graphical language which allows to
make this first-order cancellation explicit, and to seamlessly express the bounds on the remainders.
The same language will be later used for disentangling, in a more complicated setting.

We start by writing each of Gh, Gv as sums: Gh =
∑5

i=1 hi, Gv =
∑5

i=1 vi. The tensors hi, vi,
are given in Figs. 2 and 3; they represent various terms in (2.37). Note that we find it convenient
to split the identity and g as a sum of two terms each. Furthermore we define:

h↑
i = hi, vi = v↑i for i = 1, 2, 5, h↑

i = ↑hi, vi = ↑v↑i for i = 3, 4. (2.39)

Then G→1
h =

∑5
i=1 h

↑
i, and G→1

v =
∑5

i=1 v
↑
i.

↔code 4↗

Figure 2: Definition of hi tensors. The lines labeled o and x in the definitions of h1 and h2

represent orthogonal projectors onto the corresponding subspaces. The right legs of h1, h2 are
distinguished, hence the tick mark.

↔code 5↗

Figure 3: Definition of vi tensors. The bottom leg of v1, v2 is distinguished.
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Now Ag is given by the sum over i, j, k, l ranging from 1 to 5 of the following diagrams:

Ag =
∑

ijkl

D(ijkl), D(ijkl) := . →code 6↑(2.40)

As mentioned, there is some cancellation in Ag: terms first-order in g cancel a part of b. We make
this explicit by defining a set of index combinations:

C = {2111, 4111, 1211, 1411, 1121, 1131, 1112, 1113}. →code 7↑(2.41)

The cancellation is now phrased by saying that the part of the sum in (2.40) over ijkl ↓ C is zero.
For example the 2111 diagram picks up bxooo while the 4111 diagram gives h4 contracted with A→
(recall that b0000 = 0) which is exactly ↔bxooo. Similarly the other three pairs of diagrams cancel
pairwise. We can therefore drop the canceled terms and restrict the sum (2.40) to ijkl /↓ C.

We now proceed to bounding Ag i.e. finding its hat-tensor pAg. It will be expressed in terms of
a hat-tensor for A, which we write in the form

pA = pA→ +pb →code 8↑(2.42)

where ( pA→)oooo = 1 and all other components are zero, while (pb)oooo = 0. We define hat or
check-tensors for all other tensors in the diagrams D(ijkl):

• For i = 3, 4, 5 the tensors hi, h↑
i,vi, v

↑
i are Hilbert-Schmidt. We define their hat-tensors from

their expressions in Figs. 2,3. Using Lemma 2.1, these hat-tensors are expressed in terms of
(contractions of) various components of pb. Furthermore, the coe!cients 1/(1 +

↗
1↔ ω) that

appear in h5, h↑
5, v5, v

↑
5 need to be replaced by appropriate upper bounds on their absolute

values in terms of pb. We have |1/(1+
↗
1↔ ω)| ↭ 1/(1+

√
1↔ |ω|) for |ω| < 1, and the r.h.s. is

an increasing function of |ω|. So the needed upper bounds are obtained by replacing ωh,ωv

by upper bounds pωh, pωv on the absolute values of ωh,ωv, given by12

pωh = pbooxo pbxooo, pωv = pbooox pboxoo , →code 9↑(2.43)

as long as pωh < 1 and pωv < 1, which we assume to be the case.

• Tensors hi, h↑
i, vi, v

↑
i, i = 1, 2 are orthogonal projectors, so we define their check-tensors (Re-

mark 2.4). We declare the legs that are contracted with A to be distinguished, denoted with
a tick mark in Figs. 2,3 for h1, v1, h2, v2.

On the horizontal legs V = o ↘ d ↘ u ↘ r. The check-tensors qh2,qh↑
2 are 4 ≃ 4 matrices with

the uu, dd, rr elements equal to 1, and all other elements 0. The check-tensors qh1,qh↑
1 are

4≃ 4 matrices with a single nonzero element oo equal to 1.

On the vertical legs V = o ↘ x. The check-tensors qv2 qv↑2 are 2 ≃ 2 matrices with a single
nonzero element xx equal to 1. The check-tensors qv1 qv↑1 are 2 ≃ 2 matrices with a single
nonzero element oo equal to 1.

12Recall that x = d → u → r on the horizontal legs; see Sec. 2.3.1. Contraction over such x implies a sum over
u,d, r. E.g. pbooxo pbxooo stands for

∑
a=u,d,r

pbooao pbaooo.
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→code 13↑

Figure 4: Definition of ωi tensors. Here, ω1 and ω2 are Kronecker products of the shown projectors
with e0, the basis vector of o, a 1-tensor denoted by the circle with label e0.

2.7.1 Decomposition of disentangler

The next step is to decompose the disentangler D into a sum of terms. This will be extremely
helpful to accomplish two goals. One goal is to represent the contraction of two A’s with D and
D→1 as the contraction of two new tensors L and R as shown in Eq. (2.8). We refer to this step as
“splitting.” The second goal is to explicitly realize the discussed cancellation (see Sec. 2.7.4 below).
The l.h.s. of Eq. (2.8) will become a sum of terms, some of which will cancel each other exactly.

So we introduce (ωi)5i=1 tensors in Fig. 4. The right leg of these tensors lives in the Hilbert
space V1 := V ↓ (V ↔V ). The sectors of V1 have the form a or a↔ b where a, b are sectors of V . All
tensor elements not shown in Fig. 4 are assumed zero. In particular, tensors ωi with i = 1, 2, 3, 4
vanish when the right leg is in the V ↔ V subspace of V1, while ω5 vanishes when the right leg is in
the V subspace of V1.

We also define εi tensors in an analogous way but with all sector labels reflected with respect
to a vertical line and tensors ε4, ε5 acquiring minus signs (this is needed to reproduce minus
signs of some diagrams in X and X2). With these definitions it’s easy to check that

, (2.54)

where we put V1 label on the contracted leg to emphasize that it lives in a di!erent Hilbert space.
Some comments are in order:

• Since ω5 and ε5 are the only ones which have horizontal legs in the V ↔ V part of V1, they
contract to each other but not with any other tensor. Their contraction reproduces the X2

term in (2.52) including the prefactor.

• Since ωi, εj with i, j = 1, 2 are the only ones which have e0 horizontal legs, they only contract
among themselves. Their contraction reproduces exactly the 1V↑V term in D.

• Finally, ω3 contracts only with ε3, and ω4 only with ε4. These contractions reproduce the X
term in (2.52).

We also define ω↓
i and ε↓i in an analogous way so that:

. (2.55)

They only di!er from ωi and εi by some signs to account for the opposite sign of X in D→1; we
skip the exact definition.
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Substituting these expressions for D and D→1 into the left side of Eq. (2.8) we get:

→code 14↑(2.56)

2.7.2 Channels

We now proceed to the splitting, i.e. to defining the tensors L, R in the r.h.s. of (2.8). Crudely
speaking, splitting will be performed by cutting each diagram in (2.56) across the three horizontal
bonds and putting the left side into L and the right side into R. We represented the disentangler
D as a sum of contractions of ωi and εj so that we could perform this cutting. Further tricks will
accompany the cutting, whose role will be explained in due course.

As the first step we write the r.h.s. of Eq. (2.56) as
∑

q Hq with the five terms Hq, q ↓
{z,xx,ox,xo,oo} defined in Fig. 5. We will refer to these five tensors as channels. For the
xx,ox,xo,oo, the name refers to the sectors on the horizontal legs. The z (“zero”) channel is
di!erent in that it is the horizontal contracted bonds which are restricted to o. These channels are
the nonlinear counterparts of the five channels with the same names considered in the linearized
analysis in Section 2.3.6.

Figure 5: Definition of channels. A line cutting through the bonds or legs with “ ↔= o” label
means that we forbid all these bonds or legs to be simultaneously in the o sector. In this particular
case, this is the same as inserting there a projector to the orthogonal complement of o ↗ o ↗ o in
V1 ↗ V ↗ V1.

Next, we write each channel Hq in the natural way as a contraction of two tensors denoted L(0)
q
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Proposition 2.6. The functions pbL and pbR are monotonic and subhomogeneous on the (downward

closed) sets on which they are defined. Functions bL and bR are analytic, bL(0) = bR(0) = 0.

Proof. This proposition is analogous to Prop. 2.5, so we will be brief. Let us discuss why pbL is
subhomogeneous. Leaving aside (pbL)oooo = 0, the other elements of pbL are obtained by combining
in quadrature as in (2.78) tensor elements of pL which are all subhomogeneous, given by mono-
mials in pb of order ↭ 1, times scalar factors monotonic in pb. Combining in quadrature preserves
subhomogeneity.

Recall that throughout Section 2.7, A was used as a shorthand for A1, and b was used as a
shorthand for b1, where the end result of the gauge transformation was A1 = A→ + b1. When we
compose the four steps of the 2x1 map, we will have to restore the subscript 1.

2.8 Reconnection and rotation

The last steps of our RG map is the reconnection followed by rotation, Fig. 1(c),(d). After disentan-
gling and splitting, our tensor network consists of 2x1 blocks as in the r.h.s. of Fig. 1(b). Tensors
L,R were defined in Section 2.7.5; at the end of which section we also replaced them with L⊋ , R⊋ .
In terms of these latter tensors, reconnection is graphically described by the following diagram:

. →code 25↑(2.83)

Here:

• J is an isometry from V ↓ V onto V , defined below;

• Ar (r for reconnection) is defined as the shown contraction;

• Since Ar is not in general normalized, we define the normalized A2 = Ar/N2, N2 = (Ar)0000.

The reconnection step halves the horizontal size of the lattice. We have:

Z(A1, ωx ↓ ωy) = Z(Ar, ωx/2↓ ωy) = NVol/2
2 Z(A2, ωx/2↓ ωy) . (2.84)

After this, we perform the rotation step, Fig. 1(d), which we copy here:

. →code 26↑(2.85)

This defines the final, normalized, tensor A↑ as the 90 degree counterclockwise rotation of A2. So
clearly

Z(A2, ωx/2↓ ωy) = Z(A↑, ωy ↓ ωx/2) . (2.86)

Combining Eqs. (2.44),(2.84),(2.86), we obtain (2.2) with N = N 2
1N2. We record this as:

Proposition 2.7. The defined map A ↔↗ NA↑
is an RG map (for any values of the reweighting

parameters wx, wo > 0) in the sense that it preserves the tensor network partition function.

– 28 –

No need to understand these equations
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Hat-tensor is a finite-dim “bounding box” for the -dim tensor A.

It measures the norm of various pieces of the tensor: 

∞

Hat-tensor & Master Function

∥Ai∈a, j∈b,k∈c,l∈d∥ ≤ ̂Aabcd

Master function computes how the hat tensor varies from one step to the next.

We get master function by putting hats on all equations defining the RG map

(Cauchy-Schwarz)

In our paper we divide the tensor in 63 pieces, so we have a function  
from  to itself, which we evaluate on computer ℝ63
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Earle-Hamilton theorem
Our RG map happens to be analytic (in a complex Hilbert space)

Earle-Hamilton theorem: 
if we find a box which is reduced in all directions 

then the map is a contraction in the Caratheodory metric

Look for a largest box this condition is verified, with the help of a computer

The same strategy will work around the critical point. Basically, since our map is analytic we only 

need to bound the map, we don't need to worry about derivatives.

CMP…
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Results for XY model
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Figure 11: RG flow of the pb tensor for XY model initiated at ω = 0.19. The 2x1 map parameters
are: wo = 2.4 and wx = 2.3. Some of the trajectories appear only starting from the second step, as
the initial tensor has these sectors identically zero (see Remark 3.1).

We then proceed like in the Ising model analysis, replacing pb(0)Ising(ω̄) with pb(0)XY(ω̄). We tweak
the values of the reweighting parameters a bit to improve ω̄. We thus obtain:

Proposition 3.5. (a) The set of tensors O(pb(0)XY(ω̄)), ω̄ = 0.19, is a basin of stability for the 2x1

RG map with the reweighting parameters wx = 2.3, wo = 2.4.

(b) The free energy is analytic on a neighborhood of this basin of stability.

(c) b(0)XY(ω) → O(pb(0)XY(ω̄)) for all 0 ↭ ω ↭ ω̄ ↑ ε, ε = 5↓ 10→5
.

Proof. For (a),(b) we proceed as in Proposition 3.4(a),(b) for the Ising model. Fig. 11 shows the
corresponding master function iterates. The hypothesis of Lemma 2.3 is satisfied for i0 = 15 with
ϑ = 0.86 [8].

Part (c) is di!erent from Ising. There, it was easy to see analytically that pb(ω), and hence
pb(0)(ω), were monotonic in ω, so Proposition 3.4(c) was trivial with ε = 0. For XY, we don’t
have an easy proof of this monotonicity, due to more complicated expressions of tensor elements.
(Numerically we do see monotonicity.) So we prove (c) by a computer-assisted argument [8]. We
split the interval [0, ω̄↑ε] into finitely many intervals Ii = [ωi,ωi+1]. For each interval Ii we compute
a tensor pb(0)i which is a hat tensor for all b(0)(ω), ω → Ii. This is done by running the procedure

described in App. B in interval arithmetic.25 We then verify that pb(0)i ↭ pb(0)(ω̄) holds for all i.

25To compute elements of the hat tensor pb(ω) we need to evaluate the norm of tensor elements in each sector, and
normalize dividing by A0000. Since all tensor elements are monotonic, Eq. (3.19), we obtain a valid hat tensor for all
ω → Ii evaluating the norm at ω = ωi+1 and dividing by A0000 at ω = ωi. Our interval arithmetic code implements
this logic automatically.

– 40 –

This plot proves that the XY model for  is in the high-T phaseβ ≤ 0.19

(Numerically  )βBKT ≈ 1.12
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Conclusions

- Tensor network RG is a new tool for learning about lattice models.


- It allows one to be more quantitative, with computer assistance


- Nikolay Ebel, Tom Kennedy and myself are busy with constructing  
the critical fixed point for 2D Ising


- There are countless other possible applications waiting to be explored.


(With Giovanni Rizi (IHES) I am thinking about O(N) NLSM in 2D.)
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back up
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Coarse-graining
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The next example will be used frequently. We form a tensor T by contracting 4 copies of an HS tensor A, as follows:

(2.5)
A A

A A

T = .

The tensor T is well defined: it’s easy to see that each component is given by an absolutely convergent series. Moreover,
T is HS and →T→ ↭ →A→

4. This is easy to prove directly, and is also a consequence of the general Prop. 2.4 below.

2.2. Leg grouping and reindexing

The tensor T in (2.5) has 8 legs indexed by I (same index set as A). These 8 legs come naturally grouped in 4 pairs (right,
up, left, down). We may consider each of these 4 pairs of legs as a single leg with an index set I ↑ I . Viewed this way, T
becomes a 4-tensor indexed by I ↑ I . This is an example of leg grouping, which reshapes the tensor but does not change
its components. We can also group more than two legs.1

Another simple operation is reindexing. Let I1 and I2 be two index sets of the same cardinality, and let ω be a one-to-
one map from I1 onto I2 (reindexing map). If A is a tensor with a leg indexed by I1, we can use ω to transform A to a
tensor A→ where the same leg is indexed by I2.

Leg grouping and reindexing just reshuffle tensor components but do not change their numerical values. In particular,
these operations preserve the norm.

Here is an equivalent view of reindexing. Let J be a 2-tensor with the only nonzero components Jii→ = 1 if i→ = ω(i).
We call J a reindexing tensor; it has operator norm 1. The reindexed tensor A→ is then obtained by contracting A with J .
We write this graphically as:

(2.6) A→ A= Ji→ i→ .

Below we will often apply leg grouping followed by reindexing, as follows. Consider two legs of a tensor with index
set I . We group them, obtaining a leg with an index set I ↑ I . Suppose that either |I| = 1 or |I| = ↓. Then I ↑ I has
the same cardinality as I . We can then apply reindexing as above with I1 = I ↑ I and I2 = I . After reindexing, the leg
is indexed with I .

Let us see how this works for the tensor T defined by (2.5). As explained, after leg grouping we can view it as a
4-tensor with legs indexed by I ↑ I . We then apply reindexing on each of this legs, and obtain a 4-tensor indexed by I ,
the same index set we started with.

Our main case of interest will be |I| = ↓. In this case the reindexing map from I ↑ I to I is vastly non-unique.
Without loss of generality, we can take I = N. Choosing the reindexing map ω then amounts to enumerating N ↑ N in
some particular order. In our constructions below, we will fix the first few elements of the enumeration sequence, and the
rest of it will be left arbitrary.

2.3. Tensor networks

Consider a finite periodic square lattice of size Lx ↑Ly . Suppose we put a 4-tensor A at every vertex (n,m) of the lattice,
contracting its legs with the legs of tensors at neighboring vertices, and taking into account periodicity, as shown in this

1In the python package numpy, often used for numerical tensor manipulations, leg grouping can be performed by the function reshape().

isometries



A ≈ ⋅

With only coarse-graining, 

tensor gets polluted by ultra-short correlated degrees of freedom
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Disentangling


