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Two points of view on Conformal Field Theories

1) IR fixed points of microscopic theories  
described by a Lagrangian or a lattice model

conformal symmetry 

is emergent

general 
philosophy Polyakov 1974

D=2 Belavin, Polyakov, Zamolodchikov 1984

talk by Belavin @ STATPHYS Edinburgh 1983

general D Rattazzi, S.R., Tonni, Vichi 2008

talk by S.R. @ STATPHYS Seoul 2013

2) Defined algebro-analytically as 
systems of correlators of local operators  
satisfying the operator product expansion

conformal symmetry  
is built in

= conformal bootstrap

THIS TALK:
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Conformal Bootstrap Algorithm

A physical system (Lagrangian, lattice model…) 

giving rise to a unitary CFT in D or (D-1)+1 dimensions 

- A guess about operator spectrum (e.g. relevant scalars)

- Symmetry

(2008-present)

Split Operators = Low + High 

E.g. Low=  relevant scalars, symmetry currents,

stress tensor,…

 High = Everyone else
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Crossing equation:

⟨𝒪i𝒪j𝒪k𝒪l⟩ = ∑
r

i, j, k, l ∈ Low

= ∑
r′ 

i

j

k

l

i

j

k

l
r r′ 

Exchanged  = Low+Highr, r′ 

“s-channel” “t-channel”

- Equation for functions of 

    reduced by conformal symmetry to 

x1, x2, x3, x4 ∈ ℝD

⟹ (z, z̄) ∈ ℂ

- Expand to order  around “half-way” point  where

- both sides converge exponentially fast

- terms have good positivity properties

Λ z = z̄ = 1/2

Expansion order  depending on your computerΛ ≲ 1000

Rattazzi, SR, Tonni, Vichi  
JHEP 0812 (2008) 031

OPE coeffs

spires-open-journal://
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“Scan” over the Low operators and their OPE coefficients
to find allowed regions
(defined as regions where some High operators exist

 so that crossing holds, i.e. marginalizing over High)

Smart ways of scanning 


(Ning Su)


- cutting surface algorithm


- navigator function, … —Analysis is rigorous because of positivity (LP, SDP)

—Allowed regions always shrink imposing more constraints
(higher , more Low operators)Λ

Kos, Poland, Simmons-Duffin 2014
Simmons-Duffin 2015

CFT parameter space

“Guess” from 
microscopics Allowed 
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Highlight 1:     3D Ising CFT
 symmetry. Two relevant scalars:      (  odd),      (  even)ℤ2 σ ℤ2 ϵ ℤ2

Δσ

Δϵ
Low = { }σ

El-Showk, Paulos, Poland,  
SR, Simmons-Duffin, Vichi 2012, 2014

Low = { , , }σ ϵ Tμν

See NEXT TALK Rajeev Erramilli

Δσ = 0.5181489(10)
Δϵ = 1.412625(10)

Δσ

Δϵ
Low = { , }σ ϵ

shrink by Λ ↑

Kos, Poland, Simmons-Duffin 2014

Kos Poland Simmons-Duffin Vichi 2016

∼ 10−5 accuracy
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Highlight 2:     3D XY model CFT
O(2) symmetry. 4 relevant scalars:  ϕ, |ϕ |2 , ϕ2, ϕ3

Δϕ

Δ|ϕ|2 Low = { }ϕ

Kos, Poland, Simmons-Duffin 2013

Chester, Landry, Liu, Poland,  
Simmons-Duffin, Su, Vichi 2020

Δϕ = 0.519088(22)
Δ|ϕ|2 = 1.51136(22)

Low = { , , }ϕ |ϕ |2 ϕ2

10−4

Δ|ϕ|2

Δϕ

Δ|ϕ|2 Low = { , }ϕ |ϕ |2

shrink by Λ ↑

Δϕ

Kos, Poland, Simmons-Duffin, Vichi 2015
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Figure 2: 3d region corresponding to our new O(2) island using the {�i, s, tij} system and
OPE scans at ⇤ = 43 (blue). The result is compared with the best fit values of �s to
4He data [85] (brown planes) and the region for {��,�s,�t} reported by the Monte Carlo
studies [87, 86] (green box).

algorithms are crucial for scanning this space e�ciently. In figure 2, we show the resulting
island in the space of scaling dimensions ��,�s,�t, and compare to Monte Carlo and
experimental determinations. Our determination is consistent with Monte Carlo simulations
and inconsistent with the results of the �-point experiment.

1.3 Structure of this work

This work is structured as follows. In section 2, we describe the system of correlation func-
tions in the O(2) model that we study, together with previously known information about its
spectrum. In section 3, we introduce new search methods: a “cutting surface” algorithm for
scanning over OPE coe�cients, tricks for hot-starting, and Delaunay-triangulation methods
for searching in dimension space. In section 4, we present results for scaling dimensions and
OPE coe�cients in the O(2) model. Appendix A provides links to the code used in this
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Monte Carlo

He-4 experiment

[Campostrini et al 2006,

Hasenbusch 2019]

ΔϕΔϕ2

Δ|ϕ|2

[Lipa et al, 2003]

Backup: He-4 [Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi 2019]
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[Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi, 2019]

Figure 2: 3d region corresponding to our new O(2) island using the {�i, s, tij} system and
OPE scans at ⇤ = 43 (blue). The result is compared with the best fit values of �s to
4He data [85] (brown planes) and the region for {��,�s,�t} reported by the Monte Carlo
studies [87, 86] (green box).

algorithms are crucial for scanning this space e�ciently. In figure 2, we show the resulting
island in the space of scaling dimensions ��,�s,�t, and compare to Monte Carlo and
experimental determinations. Our determination is consistent with Monte Carlo simulations
and inconsistent with the results of the �-point experiment.

1.3 Structure of this work

This work is structured as follows. In section 2, we describe the system of correlation func-
tions in the O(2) model that we study, together with previously known information about its
spectrum. In section 3, we introduce new search methods: a “cutting surface” algorithm for
scanning over OPE coe�cients, tricks for hot-starting, and Delaunay-triangulation methods
for searching in dimension space. In section 4, we present results for scaling dimensions and
OPE coe�cients in the O(2) model. Appendix A provides links to the code used in this

9
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Highlight 3:     Space of all theories
- Take ANY P-invariant 3D CFT,            P=spatial parity  

- Low= { } Tμν stress tensor

 parity-even/odd scalars in TxT OPE- Bounds on  - dimensions of lowestΔ±

MFTO(∞)

FS

FF

Ising Δϵ

1 2 3 4 5 6 7

2

4

6

8

10

12

Δ+

Δ
-

〈TTTT〉 Scalar Gaps, Λ=11,19,27,35,43

Dymarsky, Kos, Kravchuk, Poland, Simmons-Duffin’2017

plot courtesy of 

Rajeev Erramilli

Δ+

Δ−
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Selected open problems

1) Uniqueness/Non-existence problems


- show that CFTs describing most famous universality classes  
are unique


- show that there is no CFT when phase transition is 1st order

2) Bootstrapping gauge theories

- isolate into bootstrap islands IR fixed points of gauge theories

3) ’Large  problem’ => “analytic functional bootstrap”?Δ

- speed up convergence of bootstrap computations using a smarter 
basis of functionals
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Open Problems - BACK UP 

See also the recording:


https://video.desy.de/video/wpc-theoretical-physics-symposium-2025-slavarychkov/
5b868b5815ca6e130168f5c2e556aa4d



1A) Uniqueness problem
Is 3D Ising CFT unique?

Experiments suggests yes 
(if not we’d see Ising magnets/liquid-vapor critical points with other exponents)

Can we show this rigorously via bootstrap?

0.6 0.8 1.0 1.2 1.4
0.5

1.0

1.5

2.0

2.5

3.0

Fig. 1: A plot of the allowed region of 3D CFTs with a Z2 symmetry. Here we assume two

relevant operators, � and ✏, taken to be Z2-odd and Z2-even symmetric, respectively. This plot

assumes the permutation symmetry ��✏� = ���✏. The shaded area is not excluded. In this plot we

use ⇤ = 25.

The OPE structure of the two relevant operators can be schematically written as

� ⇥ � ⇠

X

O+

���OO,

� ⇥ ✏ ⇠
X

O�

��✏OO,

✏⇥ ✏ ⇠
X

O+

�✏✏OO.

(2.2)

In the above equations, O+ runs over Z2-even operators of even spin and O
� runs over Z2-odd

operators of any non-negative integer spin.

The three-point function coe�cients additionally satisfy permutation symmetry, e.g.

��✏� = ���✏. (2.3)

Here, we incorporate this as a constraint in our formulation of the bootstrap problem for the

3

Atanasov, Hillman, Poland 2022

What’s the meaning 

of this region?
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N  8

N  4

N  2

N  1

Large-N
ε-expansion
σ-ϵ Bootstrap, Δσ'>3

0.5 0.6 0.7 0.8 0.9
Δσ1.4

1.6

1.8

2.0

2.2
Δϵ

The O(N) Gross-Neveu-Yukawa Archipelago

0.865 0.866 0.867 0.868
Δσ

1.99

2.

2.01

Δϵ

N  8

0.756 0.758 0.76
Δσ

1.89

1.9

1.91
Δϵ

N  4

0.648 0.65 0.652
Δσ

1.715

1.72

1.725

1.73

1.735
Δϵ

N  2

Figure 2: A compilation of our N = 2, 4, 8 islands at nmax = 18, projected onto the (!ω,!ε)

plane, compared against the perturbative estimates in the large-N expansion (represented

by the dotted blue curve), Borel-resummations of the (4→ ω)-expansion [31] (represented by

the orange boxes), and the location of the N = 1 island from the N = 1 supersymmetric

Ising bootstrap [42–44] (represented by the x). We also superpose the general ε-ω bootstrap

bounds with the assumption !ω→ > 3 from [43].

groups. In addition to the O(N) GNY models discussed above, there are also “chiral” GNY

models that possess an O(N/2)2 ⊋ Z2 global symmetry. These models, sometimes referred

to as being in the “chiral Ising” universality class, are nearly degenerate with the O(N)

GNY models for the most common low-lying operators, being only distinguishable at high

perturbative order. The Monte Carlo estimates mentioned above at N = 4, 8 are believed to

fall in this class. However, due to the expected near-degeneracy, we posit that our bootstrap

results for the leading operators also provide good (albeit non-rigorous) estimates of the

scaling dimensions in the O(N/2)2 ⊋ Z2 GNY models. In this work we review some of the

existing perturbative estimates for scaling dimensions in both models and provide a number

of new ones that will be useful in our bootstrap study. We will also do our best to di”erentiate

which of the two critical models is known to describe various phase transitions discussed in

– 5 –

1 Introduction

The conformal bootstrap [1–3] has emerged as a powerful tool to rigorously1 constrain CFT

data of strongly-coupled fixed points. Based solely on unitarity, symmetry, and assumptions

about gaps in the spectrum of scaling dimensions, the bootstrap has produced stringent

bounds on critical exponents of several universality classes describing real-world statistical

and quantum phase transitions. These include the 3d critical Ising model [4–9] which describes

liquid-vapor transitions and uniaxial magnets, and the O(N) models [8, 10, 11] — in particular

the O(2) model [12] which describes the superfluid transition in 4He, and the O(3) model [13]

which describes classical Heisenberg ferromagnets.

The Ising and O(N) models are perhaps the simplest 3d universality classes that can

be reached via a renormalization group (RG) flow from a scalar theory. In this work, we

focus on perhaps the simplest 3d universality class involving fermions: the O(N)-symmetric

Gross-Neveu-Yukawa (GNY) model. The GNY model contains N Majorana fermions ωi

transforming in the vector representation of O(N), interacting with an O(N)-singlet pseu-

doscalar ε [14]. The Lagrangian is2

LGNY = →
1

2
(ϑε)2 → i

1

2
ωi/ϑωi →

1

2
m2ε2

→
ϖ

4
ε4

→ i
g

2
εωiωi. (1.1)

This theory has a critical value of m2 below which ε spontaneously gets a nonzero vacuum

expectation value (VEV), giving a mass to ωi and, consequently, breaking parity. Above the

critical value of m2, the VEV of ε vanishes, parity is preserved, and the fermions are massless.

At the critical value of m2, this theory is expected to flow to a CFT with a single relevant

parity-even O(N)-singlet scalar operator ϱ ↑ ε2.

Beyond serving as one of the simplest models of scalar-fermion interactions in quantum

field theory, the GNY universality classes have been proposed to describe a variety of quantum

phase transitions in condensed matter systems with emergent Lorentz symmetry. For exam-

ple, this model and some of its variations have been proposed to describe phase transitions in

graphene (using N = 8) [16–19], time-reversal symmetry breaking in d-wave superconductors

(also for N = 8) [20, 21], and time-reversal-symmetry breaking transition of edge-modes in

topological superconductors (for several low values of N) [22]. For the special case N = 1,

the GNY critical point is expected to exhibit emergent supersymmetry at the transition [23].

The GNY models have been studied previously with the conformal bootstrap in [15, 24].

Those works performed a bootstrap analysis of a single four-point correlator of fermionic

1Throughout this paper, when stating that our bootstrap results are rigorous we mean that they do not

rely on any unstated assumptions about QFTs. However, the bounds are not completely rigorous in the

mathematical sense since they rely on some technical assumptions about our search algorithms (for example,

over OPE space).
2Here we are following the conventions in appendix A of [15] and contracting the indices of the two com-

ponents of the Majorana fermions by ωiωi = !ωε
ωi,ωωi,ε . Note that ωiωi is parity-odd — hence the Yukawa

term εωiωi preserves parity, since ε is a pesudoscalar.

– 2 –

Gross-Neveu-Yukawa model masquerading as Ising

Under spatial parity  
P : ψψ → − ψψ, ϕ → − ϕ

- For Low = { },  P is indistinguishable from Ising ϕ, ϕ2 ℤ2

- May be distinguished for Low = { }  ϕ, ϕ2, Tμν
T × T ⊃ ϕ in GNY but not in Ising

Erramilli, Iliesiu, Kravchuk, Liu, Poland,  
Simmons-Duffin, Su, Vichi 2023



Slava Rychkov14

Erramilli, Iliesiu, Kravchuk, Liu, Poland,  
Simmons-Duffin, Su, Vichi, 

unpublished

Ising and GNY may be distinguished for Low = { }  ϕ, ϕ2, Tμν
T × T ⊃ ϕ in GNY but not in Ising

spurious region shrinks

Open problem: Can the spurious region be eliminated altogether?



1B) Non-existence problem
For some models experiments and Monte Carlo suggest 1st order transition

But one can never quite exclude 2nd order in a slightly modified model.

A proof can be obtained by showing that there is no CFT with requisite symmetry.

Simplest case: 3-state Potts model in D=3

Lattice Monte Carlo: correlation length ξ ∼ 10

Bootstrap open problem: 

Show that there is no unitary 3D CFT 

 - with  global symmetry

 - a single relevant singlet scalar

 - one (or more) scalars in the fundamental of   

S3

S3

https://sites.google.com/site/slavarychkov/open-problems-in-conformal-bootstrap

[Janke, Villanova 1997]
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2) Bootstrapping 3D conformal gauge theories

QED3  (bosonic/fermionic) = 3D U(1) Maxwell field +   bosons/fermionsNf

Global symmetry: G ≃ SU(Nf) × U(1)top

Bosonic QED3                   Deconfined Quantum Critical Point Nf = 2

Fermionic QED3                    Dirac Spin LiquidNf = 4

NfN*f = ?

CFTSymmetry breaking

Can we bootstrap these CFTs and determine  ?N*f

Herbertsmithite
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Features of QED3

17

- Physical CFT operators are gauge invariant combinations of elementary fields

ψ̄iψj, ϕ*i ϕj, … ψ, ϕ

- There are also “monopole operators” charged under  U(1)top

[ncatlab]

Δq ∝ Nf

Difficulties: 
- These operators are heavier than the lightest scalars in scalar/fermionic CFTs


- expect slower convergence as  (cf “large  problem”)Λ ↑ Δ

- How to distinguish from “QCD3” theories where the gauge group is  ? U(Nc)
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Monte Carlo

Large N f

ΔM
1
≤
2.6

ΔM
1
≤
2.5

Λ  39
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Figure 2: (Color online) On the top: The allowed region in the space of dimensions of the
fermion bilinear (a) and the monopole (M2ω) from Ref. [53], CC BY 4.0. The gap assumptions
are imposed to be compatible with the conformal phase scenario on triangular lattice and the
Kagome lattice. The green (light gray) star and the dashed error box represent the results of a
Monte Carlo simulation, while the blue point is from the large-Nf expansion. On the bottom:
The allowed region in the space of dimensions of the fermion bilinear (!r) and the monopole
(M1) from Ref. [54]. Here, the green (light gray) dot indicates the result from the large-Nf

expansion, while the red dashed box is from a Monte Carlo simulation. See Figure 5 of [54] for
details.

from large Nf expansion. On the other hand, Ref. [54] imposed various gap assumptions

inspired by the large Nf result. Specifically it assumed !M1 ↭ 2.6, !S(220)
↫ 2.8. They

found bounds in an isolated region compatible with the large-N prediction. This work also

introduced a useful technique called interval positivity to implement gap assumptions of the

form !min ↭ ! ↭ !max. In both works, the (ir)relevance of M1 and S(220) is not determined

by bootstrap, but inputted as an assumption, and a reliable spectrum has not been obtained.

Thus the matter cannot be considered settled.

For Nf = 2 case, the work [50] bootstrapped the correlator of the lowest monopole

operator. Imposing the constraints of RG stability and/or of the O(4) symmetry enhancement

[61], the bounds of [50] were confronted with determinations of scaling dimensions in Monte

Carlo simulations, being inconsistent with [62], while marginally consistent with [63, 64].

3.2.2 Bootstrapping bosonic QED3

Several works have bootstrapped the bosonic QED3. One issue is how to distinguish QED3

from non-abelian SU(Nc) gauge theories with the same number of matter field multiplets.

This question was investigated in [65, 66]. The key observation is that there are natural

gaps in the spectrum that distinguish between di”erent Nc values. The simplest example

– 7 –

Various bootstrap bounds on QED3 were derived but these CFTs were not yet isolated into small closed regions 

Monte Carlo
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Figure 2: (Color online) On the top: The allowed region in the space of dimensions of the
fermion bilinear (a) and the monopole (M2ω) from Ref. [53], CC BY 4.0. The gap assumptions
are imposed to be compatible with the conformal phase scenario on triangular lattice and the
Kagome lattice. The green (light gray) star and the dashed error box represent the results of a
Monte Carlo simulation, while the blue point is from the large-Nf expansion. On the bottom:
The allowed region in the space of dimensions of the fermion bilinear (!r) and the monopole
(M1) from Ref. [54]. Here, the green (light gray) dot indicates the result from the large-Nf

expansion, while the red dashed box is from a Monte Carlo simulation. See Figure 5 of [54] for
details.

from large Nf expansion. On the other hand, Ref. [54] imposed various gap assumptions

inspired by the large Nf result. Specifically it assumed !M1 ↭ 2.6, !S(220)
↫ 2.8. They

found bounds in an isolated region compatible with the large-N prediction. This work also

introduced a useful technique called interval positivity to implement gap assumptions of the

form !min ↭ ! ↭ !max. In both works, the (ir)relevance of M1 and S(220) is not determined

by bootstrap, but inputted as an assumption, and a reliable spectrum has not been obtained.

Thus the matter cannot be considered settled.

For Nf = 2 case, the work [50] bootstrapped the correlator of the lowest monopole

operator. Imposing the constraints of RG stability and/or of the O(4) symmetry enhancement

[61], the bounds of [50] were confronted with determinations of scaling dimensions in Monte

Carlo simulations, being inconsistent with [62], while marginally consistent with [63, 64].

3.2.2 Bootstrapping bosonic QED3

Several works have bootstrapped the bosonic QED3. One issue is how to distinguish QED3

from non-abelian SU(Nc) gauge theories with the same number of matter field multiplets.

This question was investigated in [65, 66]. The key observation is that there are natural

gaps in the spectrum that distinguish between di”erent Nc values. The simplest example

– 7 –

see [SR, Su RMP 2024]

for a discussion

[Reehorst, Refinetti, Vichi 2020, He, Rong, Su 2021]

identified gaps in the operator spectrum (“decoupling operators”) 

which could help distinguish QED3 from QCD3

(color indices allow for more antisymmetrization)
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3) Large  problemΔ
= Slow convergence for bounds on correlators of large-  operators Λ ↑ Δ

Beem, Rastelli, van Rees 2016

1/151/251/401/100 1/Λ2.90

2.95

3.00

3.05

3.10

3.15

Δ0*

Figure 2. Upper bounds for the dimensions of the LTUSOs of spins ` = 0, 2, 4 for c = 3/4 as a function
of 1/⇤ for ⇤ = 14, 15, . . . , 38. These bounds were derived using the semi-definite programming method with
sdpb [18]. The red line denotes the “corner estimate” of the extremal value for these operator dimensions
from [2, 21] – see also Section 4.2 below.

using the semi-definite programming approach, with which we have been able to test up to ⇤ = 38
(corresponding to a search space of dimension N(38) = 361). Extrapolations of the single-channel
bounds for ` = 0, 2, 4 are shown in Fig. 2.

4.1.1 Consistency at small and large central charge

In order to interpret our bounds in the context of SYM theories, it is sensible to pay particular
attention to the cases c = 1/4 and c = 1. For these values of the central charge, there are known
solutions to crossing symmetry that have a reasonable chance to realize the maximum dimensions for
LTUSOs. Consequently we can use these cases to investigate whether these numerical methods are
making contact with actual SCFTs.

We first consider the case of c = 1/4. This is the value of c in the u(1) SYM theory, which is free.
The conformal block decomposition of the free-field-theory four-point function has been analyzed in
[6] for any gauge group. It has nonnegative OPE coe�cients for all c > 1/4, and for c > 1/4 the first
unprotected operator of spin ` sits at the unitarity bound �` = 2+ `. On the other hand, for c = 1/4
the coe�cient of the unprotected scalar operator at the unitarity bound vanishes, and the lowest-
dimension unprotected singlet operator appearing with nonzero coe�cient has dimension four. (More
precisely, for c = 1/4 the entire contribution of the dimension-two Konishi operator is accounted for
by the higher-spin conserved-current block, and therefore a2,0 = 0.) This physical result is beautifully
reproduced by the numerical bounds in Fig. 1: the spin-two and spin-four bounds are approaching
the unitarity bounds of 4 and 6, respectively, at c = 1/4. The scalar bound, however, approaches the

– 22 –

Upper bound on 1st unprotected scalar 

for  SCFT with c=3/4

(Konishi in SYM with SU(2) gauge group)

𝒩 = 4
slow convergence

From 4pt function of protected scalar in  of “large” dimension 20′ Δ = 2
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Origin of large  problemΔ

CFT 4pt function  is analytic for    ⟨𝒪Δ𝒪Δ𝒪Δ𝒪Δ⟩ z, z̄ ∈ ℂ\(T+ ∪ T−)

ℂ

0 1

s-channel analytic in ℂ\T+

t-channel analytic in ℂ\T−T+T−

1/(zz̄)Δ 1/[(1 − z)(1 − z̄)]Δ

conformal map x, x̄ ∈ 𝔻
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x, x̄ ∈ 𝔻
Expand crossing equation around 

= act on it with “derivative functionals”

         

(that’s standard way since our 2008 work)

x = x̄ = 0

∂n
x∂m

x̄ |x=x̄=0 n + m ≤ Λ

The largest class of functionals given the analyticity domain

can be obtained as contour integrals pushed to the boundary.


Such functionals can be expanded in “derivative functionals” 

but convergence becomes slow for large  because of s,t-channel sing’sΔ

Mazac 2016“analytic functionals”
Mazac, Paulos 2018
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Analytic functionals

2.3 Asymptotic Behavior of 1D Functionals

In this section, we examine the asymptotic behavior of one-dimensional functionals.

(a) Asymptotic behavior of ω→B
1

0 2 4 6 8 10 12 14
-10

-5

0

5

10

15

20

Δ

(b) Asymptotic behavior of ε+F
1

Figure 2: Depiction of the asymptotic behavior of one-dimensional functionals.

It is noteworthy that the functional family of plus type and minus type exhibit the
following universal asymptotics in large ![18][23]:

ϑB,F

n (! | !ω) →
4 sin2

[
ε

2

(
!↑!B,F

n

)]

ϖ2




ag!
”

B,F
n

ag!
”



Rϑn (! | !ω) (2.19)

For both plus type functional and minus type functional, the Rϑ (! | !ω) takes the form:

RB,F

ϑ→ (! | !ω) ↓
”→↑

Cϑ↓

!3
, RB,F

ϑ+
(! | !ω) ↓

”→↑

Cϑ+

!5
(2.20)

The constants Cϑ+ and Cϑ↓ are, in essence, functions of the external dimension !ω and
the functional itself. While a closed-form formula for the bosonic and fermionic bases is
currently unknown, it could, in principle, be derived using the formula provided in [18].
By utilizing this asymptotic information, we normalize the functional by a universal fac-
tor for both the plus and minus types8. Further details of the normalization procedure
are delineated in Appendix.E. Figure 2 presents some of the normalized functionals for
reference.

3 Product functionals and its action in general dimensions

In this section, we will embark on a concise introduction to two-dimensional CFTs under the
global conformal symmetry, specifically eschewing the Virasoro algebra. Subsequently, we
will reexplore the definition and underlying concepts of the product functional, detailing
several of its cardinal properties that render it an optimal candidate for the numerical
conformal bootstrap. Finally, we will delve into its implications in the context of general
dimensional CFTs and draw several immediate inferences from this discussion.

8This is important for the numerical stability.
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[Ghozh, Zheng]

Have various magic properties,

give exact solutions to some max gap problems

More generally, a faster-convergent basis for numerical bootstrap calculations
Paulos, Zan 2019; Ghosh, Zheng 2023

led to a broad relationship with the Mellin amplitude [28–32], dispersion relations [25, 33–
35], sphere packing [36, 37] and real projective space[38], thereby highlighting the broad
applicability and potential of this class of functionals.

However, the application of analytic functionals within numerical bootstrap remains
less explored. Studies have indicated that 1D analytic functionals present a superior con-
vergence behavior than derivative bases [21, 39], and have been successfully applied to
bootstrap integrable theories [40]. The limited progress, from our perspective, lies in the
di!culties associated with approximating analytic functionals by polynomials due to their
transcendental nature, thereby inhibiting the utilization of SDPB. Furthermore, e!cient
numerical evaluation methods for most analytic functional frameworks are lacking. Addi-
tionally, analytic functionals in dimensions greater than 1 are often devoid of assurances
for positivity or completeness conditions.

Figure 1: Spin ω = 0 gap maximization. The purple, red, and black dashed lines represent
the gap maximization with 15, 91, and 171 derivatives, respectively. The dotted circles
indicate the positions of several selected minimal models. The shaded blue region is the
allowed region by the analytic functional basis.

We should note that the optimization problems associated with the conformal boot-
strap, regardless of whether they utilize a derivative basis or analytic functionals, are en-
compassed within the framework of Semi-Infinite Programming (SIP) [41, 42]. The outer
approximation method, used for solving SIP, involves generating a sequence of discretized
problems which are expected to converge to the original SIP problem. This discretiza-
tion approach has been implemented in early numerical conformal bootstrap work, and an

4

Ghosh, Zheng 2023D=2:

D=3 - works (Ghosh, Zheng 2023) but need more efficient implementation
A future of numerical bootstrap?


